Plan de l'article :
Si il est coutume de dire qu'une voiture électrique n'a pas besoin de calandre ouverte en raison de l'absence de moteur thermique à refroidir, dans la réalité c'est un peu une fausse idée. En effet, et même si il ne faut pas refroidir un moteur à combustion interne (qui nécessite beaucoup d'apport en air frais côté échangeurs/radiateurs), les besoins en air sont toutefois assez conséquents et il est donc nécessaire. On aura même ici et parfois plusieurs circuits de refroidissement, car il y a finalement beaucoup de chose qu'il faut maitriser d'un point de vue thermique. Et vous allez voir qu'au delà de refroidir, le circuit peut aussi chauffer ...
A lire aussi :
Une voiture électrique contient beaucoup d'éléments qu'il faut refroidir, et on pourra citer les suivants :
Il existe tout un tas de manières de concevoir un circuit de refroidissement de voiture électrique, et nous allons ici nous baser sur une architecture assez courante et avancée qui comprend un système actif de refroidissement de la batterie, qui permet donc aussi le préconditionnement (chauffage de la batterie).
Circuit de refroidissement
D'autres architectures existent mais cette dernière s'avère être une bonne réprésentante de ce qui se fait couramment
Ici une Model 3 pour que vous voyiez un cas réel en terme de disposition des organes (A2MAC1)
On a donc deux circuits d'eau qui sont bien séparés l'un de l'autre. Il faut en effet ne pas gérer sur un même circuit les éléments qu'il faudra systématiquement refroidir (moteur, onduleurs, chargeur ..) de ceux qu'il faudra parfois chauffer ou refroidir selon le contexte (et qu'il faut donc gérer de manière séparée), à savoir la batterie de traction (il faut la réchauffer à froid et la refroidir à chaud).
On a donc deux circuits d'eau distincts auquel s'ajoute un circuit de climatisation doté d'un fluide frigorigène qui est compressé (production de chaud) et détendu (production de froid), qui permettra donc à la fois d'aider à refroidir ou à réchauffer. Notez que ce dispositif sert aussi bien évidemment aussi pour l'habitacle, et la pompe à chaleur permet alors à la fois de gérer la température de la batterie mais aussi celle des passagers. Elle pourra donc faiblir quand la batterie aura besoin d'un refroidissement actif vigoureux, et en plein été elle aura beaucoup de travail à accomplir.
Voyons en premier le circuit périphérique, à savoir le plus grand qui entoure le schéma.
Ce dernier est très classique car il ne vise qu'à faire circuler de l'eau en la faisant passer par un radiateur frontal qui va servir de refroidisseur (échangeur air/eau).. Cela s'apparente donc à un banal circuit de refroidissement que l'on retrouve sur une voiture thermique. Le ventilateur se déclenche quand le calculateur détecte via une sonde de température que l'eau est trop chaude.
Ce deuxième circuit est bien plus sophistiqué et il se distingue donc bien d'une voiture thermique. En effet, si cela reste un banal circuit de refroidissement d'eau quand la vanne 2 (parmi les deux petites numérotées en gris sur le schéma) à trois voies s'ouvre vers le radiateur (vers le haut), il reste deux chemins possibles qui vont permettre de refroidir plus activement l'eau ou encore la réchauffer.
Le but ici est donc de gérer thermiquement la batterie, qui peut être trop froide ou trop chaude, il faut donc deux dispositifs qui permettent de réchauffer ou refroidir l'eau.
Le refroidissement peut se faire de deux manières, à savoir très classiquement en utilisant le radiateur frontal (température de batterie modérée), ou plus intensément en utilisant le froid de la climatisation (pour cela il faut que la vanne 2 envoie vers la gauche et la vanne 1 vers le haut) grâce à un échangeur qui transmet le frais de la pompe à chaleur (après détendeur) au circuit d'eau.
Le préconditionnement consiste à l'inverse à chauffer l'eau afin qu'elle réchauffe à son tour la batterie de traction. Il faut pour cela que la vanne 2 s'ouvre vers la gauche et la 1 vers la gauche elle aussi, ce qui fera passer la boucle au niveau d'une résistance thermique qui va réchauffer l'eau. Sur d'autres circuit ça peut être le circuit de la pompe à chaleur qui peut servir à la place de la résistance, mais cette fois côté compresseur (en aval) afin de récolter la chaleur.
A lire : pourquoi la batterie charge lentement quand elle est froide ?
Ce circuit est bien à mettre à part, car il ne contient pas d'eau. Il intègre en effet un fluide frigorigène qui sera malmené, à savoir compressé et détendu afin d'obtenir respectivement du chaud ou du froid.
Il sert donc à la fois à climatiser et chauffer l'habitacle mais aussi gérer thermiquement le circuit d'eau de la batterie, comme je l'ai déjà dit précédemment.
Voici d'autres schémas avec notamment celui d'une voiture hybride (très proche, voire similaire).
Model 3
HYBRIDE
Ces articles pourraient vous intéresser :
Ecrire un commentaire
(Tri par ordre de longueur de l'avis)
(Tri par ordre chronologique)
Pensez-vous que les limitations de vitesses instaurées il y a des dizaines d'années sont encore adaptées aux voitures modernes ?
© CopyRights Fiches-auto.fr 2024. Tous droits de reproductions réservés.
Nous contacter - Mentions légales
Fiches-auto.fr participe et est conforme à l'ensemble des Spécifications et Politiques du Transparency & Consent Framework de l'IAB Europe. Il utilise la Consent Management Platform n°92.
Vous pouvez modifier vos choix à tout moment en cliquant ici.